Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stati...

متن کامل

Column Coupling Electrophoresis in Biomedical Analysis

Biomedical analysis is one of the most advanced areas solved in analytical chemistry due to the requirements on the analyzed samples (analyte vs. matrix problems) as well as on the overall analytical process regarding automatization and miniaturization of the analyses. Separation methods for the biomedical analysis are requested to provide high resolution power, high separation efficiency and h...

متن کامل

Column Networks for Collective Classification

Relational learning deals with data that are characterized by relational structures. An important task is collective classification, which is to jointly classify networked objects. While it holds a great promise to produce a better accuracy than noncollective classifiers, collective classification is computational challenging and has not leveraged on the recent breakthroughs of deep learning. W...

متن کامل

On Column Selection in Approximate Kernel Canonical Correlation Analysis

We study the problem of column selection in large-scale kernel canonical correlation analysis (KCCA) using the Nyström approximation, where one approximates two positive semi-definite kernel matrices using “landmark” points from the training set. When building low-rank kernel approximations in KCCA, previous work mostly samples the landmarks uniformly at random from the training set. We propose...

متن کامل

A Note on Column Subset Selection

Given a matrix U , using a deterministic method, we extract a "large" submatrix of Ũ (whose columns are obtained by normalizing those of U ) and estimate its smallest and largest singular value. We apply this result to the study of contact points of the unit ball with its maximal volume ellipsoid. We consider also the paving problem and give a deterministic algorithm to partition a matrix into ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Molecular Sciences

سال: 2016

ISSN: 1422-0067

DOI: 10.3390/ijms17010136